\qquad

C.U.SHAH UNIVERSITY Winter Examination-2019

Subject Name: Analog Electronics Circuits

Subject Code: 4TE03AEC1
Semester: 3
Date :15/11/2019
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

Branch: B.Tech (Electrical)

Time : 02:30 To 05:30
Marks : 70

1) The efficiency of a full wave bridge rectifier is \qquad .
2) If the value of capacitor increases, ripple voltage at output side of rectifier decreases.Determine whether the given statement is TRUE or FALSE.
3) What is the maximum efficiency of transformer coupled class A amplifier?
4) Ripple factor of half wave rectifier is \qquad $\%$
5) Which transistorDC biasing circuit is beta (β) independent?
6) If a negative feedback is provided to an amplifier, the gain of the amplifier inreases.Determine whether the given statement is TRUE or FALSE.
7) For a BJT amplifier, if base to emitter voltage $V_{b e}=0.82 \mathrm{~V}$ and base current $I_{b}=$ 45 ? A, what will be the value of input impedance $h_{i e}$?
8) How much phase difference is provided by a single $R C$ section in a RC phase shift ocsillator?
9) Which type of feedback is provided in an oscillator?
10) A transistor operating as an emitter followerprovides theoutput signal from \qquad terminal of the BJT.
11) A 7912 is used in a regulated voltage power supply. How much constant output voltage power supply will provide?
12) List any four characteristics of an ideal op-amp.
13) Draw the equivalent circuit of an ideal opamp.
14) An input voltage of 100 mV (peak) is given to the common emitter amplifier. The output voltage of an amplifer is 1 V (peak). Determine the gain of an opamp.

Attempt any four questions from $\mathrm{Q}-2$ to $\mathrm{Q}-8$

Q-2 Attempt all questions

(a) Draw the circuit diagram of full wave bridge wave rectifier and explain its operation. Draw the waveforms of supply voltage, load voltage and load current.
(b) In a shunt regulator circuit using Zener diode as shown in the below figure, the series resistance used is $1 \mathrm{k} \Omega$. It provides 5 V to a load of $1 \mathrm{k} \Omega$. If $I_{\text {zmin }}=2 \mathrm{~mA}$ and $I_{z \max }=30 \mathrm{~mA}$, what is the range of the input voltage for the output voltage to remain constant.

Q-3 Attempt all questions

(a) Explain zener shunt regulator circuit for varying input voltage. (Line regulation)
(b) A single phase diode bridge rectifier is fed at $110 \mathrm{~V}, 50 \mathrm{~Hz}$. The load is $\mathrm{R}=470 \Omega$. Findi) Average Output Voltage ii) RMS Output Voltage
iii) DC Output Poweriv) Efficiency

Q-4
Attempt all questions
(a) Draw the h-parameter model for CE transistor and obtain the equation for input impedance, forward current transfer ratio and reverse voltage transfer ratio.
(b) For the below fixed bias circuit, for $\beta=90$, Determine
i) $\quad I_{B}$
ii) I_{C}
iii) $\quad V_{C E}$

Q-5
(a) Draw the pin diagram of 741 IC op-amp and explain the function of each pin.
(b) Draw and explain voltage divider bias circuit for BJT.
(a) List the advantages of negative feedback in amplifier and explain any two of them.
(b) Draw circuit diagram of Class B push pull amplifier and explain its operation. $\mathbf{0 7}$

Q-6

(a) Draw the circuit diagram of series fed Class A amplifier and prove that its maximum efficiency is 25%.
(b) Explain the following modes of operational amplifier for open loop configuration.
(i) Differential Amplifier (ii) Inverting Amplifier (iii) Non-inverting Amplifier Attempt all questions
(a) Explain the theory of Barkhausen criteria for oscillation in an oscillator circuit.
(b) Draw the circuit diagram of Hartley's oscillator and explain its operation. Derive the equation for the frequency of oscillation.

Attempt all questions

0707(b)

Draw and explain volage divider bias circuit for BJ.

